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4 finite element method is presented to solve the problem of ocean tides. A spectral !;n 
time) model is implemented by deriving a second order partial differential equation from the 
classicai shallow-water equations. The influence of several key factors on the precision of the 
method are investigated: density of triangles, degree of approximation and numerical 
integration, computer costs. Two analytical solutions are used as a reference: a damped 
Kelvin amphidrome in a channel of constant depth over a rotating earth, and a tidal ivase 
propagating from the deep ocean over a continental plateau. The efficiency of the Pl- 
Lagrange approximation is clearly demonstrated in terms of precision and computer costs. A 
criterion is established to guarantee a given precision, relating the basic grid size of the 
iriangulation to be used to the typical wavelength of the tidal vvave. An application of the 
modei to the sohnion of a problem including a variable topography, rotation, nonlinear bot- 
tom friction and a tide-generating potential forcing is presented as a final complex test. 
C’ 1986 Academic Press. Inc. 

INTRODUCTION 

During these past ten years, important progress has been done in ocean tide 
modelling, by improving the analytical formulations of the problem, and the 
numerical resolution of the corresponding equations over the whole real ocean (see 
Hendershott [S], Estes [4], Zahel [24], Accad and Pekeris [I]. Schwiderski 
[22], Parke and Hendershott [18], Gotlib and Kagan [6], Parke [i9]!. 

But the obtained solutions are not yet fully satisfactory, One of the main diE 
ficulties is the correct simulation of the energy dissipation over the shallow con- 
tinental shelves, which needs fine spatial resolution over there. Up tili now, onii; 
finite difference techniques have been used for practical computations, with reguiar 
spatial resolution, going up to 1’ x 1’) or very recently with different nested dis- 
cretizations refined in specific areas as done by Krohn [lo]. However, in engineer- 
ing apphcations for coastal dynamics, another approach using finite element techni- 
ques is under development, based on the pioneering attempts of Grotkop [5 ]t Con- 
nor and Wang 131, and Taylor and Davis [23]. The interest in finite element 
methods is related to their potential flexibility in the representation of complex 
boundary geometry, and the prescription of arbitrary grid point locations, and in 
the use of higher order local interpolations. Two alternative representations of time 
domain are undertaken in that context: time stepping and spectral formulation. By 

, the first one is the most commonly used because it applies not only for perio 
enomena but more generally to any arbitrary (meteorological) forcing funcri 
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However, a significant saving of computer time can be obtained for periodic 
phenomena, like tides, by seeking periodic solutions. That spectral finite element 
approach for tidal modelling has been formulated simultaneously by several 
authors: Kawahara and Hasegawa [9], Pearson and Winter [20], Le Provost and 
Poncet [12], and successfully applied for the solution of practical coastal tide 
problems by Le Provost, Rougier, and Poncet [14]. 

Such a method can be extended for ocean tide computations. It presents the 
interest of using simultaneously large meshes of several degrees over the ocean and 
local refinements down to some tens of kilometers over the continental margin and 
along the coastal boundaries. The aim of this paper is to present that formulation, 
to investigate the basic criteria for a precise resolution of the problem (density of. 
triangles over the domain related to the wavelength of the tidal oscillation, degree 
of approximation and precision of numerical integration) by reference to analytical 
solutions established for some typical tests, and to illustrate the performance of the 
model on a schematic application. 

1. THE ANALYTICAL FORMULATION 

1.1. The Equations and Boundagl Conditions 

On the basis of the depth integrated shallow water equations, assuming a mul- 
tiperiodic solution, the presence of a dominant wave in the spectrum (e.g., the lunar 
Mz constituent), and using a perturbation scheme to linearize the problem (with a 
particular emphasis on bottom friction), Le Provost et al. [14] have formulated 
pseudo nonlinear spectral equations for the different tidal constituents, in a 
spherical coordinate frame related to the earth: 

where (a, ,u, V) are the complex amplitude of the sea surface elevation and the 
eastward and northward components of the velocity I’ for a given component of 
frequency 0: 

* A, cp, a are the longitude, latitude, and earth radius. 
* H is the undisturbed depth of water, g the gravity. 
* f is the Coriolis parameter: f= 252 cos q, with Q angular velocity of the 

earth rotation. 
+ Y, r’, rrr, and P”’ are the quasi-linearized coefftcients for bottom friction, 

depending on A, cp. 

When the perturbation developments are limited to the second order of 
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approximation AjA, (Ak being the characteristic amplitude of index k wave); the 
analytical expressions of these coefficients are the following: For the dominant wave 
4of index lb: 

where R, and R’, are expressed as the products of the characteristis amplitude A i of 
the wave by the modulus of the velocity at the location (A., cp) and respectively tw 
different terms depending on the amplitude and phase of the velocity (see [ 143 ). 

For the other waves of index k: Y = C(Rk + R:,)jH, 

:.I = y” = CRi,/H and Y = c-3 R, - R;‘),!H 

where R,, RK, Ri are coefficients similar to Ri and R; and only depend on the 
dominant solution (see [ 141). 

s F,,, F,., F, are the forcing terms, including the tide generating potential for 
the astronomical constituents, and second-order advective or frictional terms for the 
nonlinear harmonics and wave-wave interaction constituents. For the astronomicai 
waves. these terms are of the following form: 

ITS is the primary astronomical tide generating potential for the wave of index k. ir, 
and k, are the classical Love numbers. fJocean Ga cos y & dy is a Green integral 
which represents the loading effects of the tide, and which will not be taken into 
account in the following numerical tests. 

For second-order nonlinear waves, these terms are dependent on the nature of 
these constituents. For instance, for the M4 wave (of index 2 in the following) which 
is the first harmonic of the M2 dominant wave, these terms. if limited to the second 
order are as follows: 
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Note. The spectral form of (1 ), although under a linear or quasi-linear aspect, is 
thus fully representative of the nonlinear tidal dynamics over oceanic and shallow 
water areas (to the order of approximation retained in the perturbation develop- 
ments). Only lateral mixing is for the moment not included in this formulation. 

The boundary conditions associated with system (l), over a domain 9 are: 

V. n = 0 along coastal boundaries 

tx = c(~ given along open ocean limits. 
(21 

For practical numerical applications, the finite element analog of (1) can be 
obtained by a direct application of the Galerkin procedure. However, it has been 
shown by Lynch [16] that numerical solutions computed from this formulation are 
subject to node to node oscillations. 

Following Le Provost and Poncet [ 131, an alternative is to eliminate the velocity 
from (l), leading to the second-order equation: 

where 

and 

A = (jco + r) E-‘, B= (jo + r”‘) E-l, 

C= (r”+f’) E-l, D = (t-‘--f) E-I, 

E=a2[02+f2+f(r’-r”)+r’r‘‘-rr”‘-JW(r+r”)](gH)-I. 

Equation (3) is called the “wave equation” by Lynch and Gray [ 151. It is a second- 
order equation of the Helmholtz type relative to the complex unknown CI. It has to 
be solved under limit conditions (2). If necessary, the velocity field can be obtained 
from the CI solution and its first derivatives by the relations: 

Lynch [15] has shown the effectiveness of that wave equation formulation in 
eliminating the node to node oscillations previously noticed when solving the 
problem through the primitive system ( 1). 
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1.2. k’;lriational Formulation 

Considering the Sobolev space H’(9) the complex-valued functions and the fi;sa 
derivatives of which are square integrable on the domain 9, we introduce a sub- 
space of H’(S) defined by 

IF@,) = (CL E H’(9 j: c( = txO on the open boundary] 

where CI and CI~ are assumed to be complex-valued functions. W(0) is the translated 
vectorial subspace from the affine one &‘(a,), with the norm induced by the scalar 
product 

(4 B > iv(G) = s {x/?* +grad(~~j.grad(fi*j) &2 I~ 

a “*” denotes the complex-conjugate and & an element of area of 9). 
In order to obtain a variational formulation, the wave equation (3) can be 

integrated over the domain 9 with a testing function p in W(0). Assuming that the 
boundaries are regular enough, the use of a Green-Riemann integral allows to rake 
into account the boundary conditions (2) and write an integral equation leading to 
the following problem: 

Find a function x in W’(cc,), such that L,(oc, j3) = F,(b), V/i E W(O). where 

A theorem of existence and uniqueness has been established for all the waves in the 
tidal spectrum, under some assumptions of smoothness and order of magnittide for 
the variable frictional coefficients, the depth, and the forcing terms 1131. 

The numerical resolution of the variational problem is realized by classical 
Lagrange finite element methods. An automatic finite element package is used for 
the following applications. It has been built by Poncet [2ij and adapted to solve 
automatically the tidal problem. 

2. TESTS OF PRECISION 

The aim of the paper is to establish a set of basic criteria to ascertain precise 
resolution in practical applications. The philosophy, in the following, is to a~& 
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our numerical model to the resolution of some schematic cases for which it is 
possible to find an exact solution. The main characteristics of the ocean tide 
problem we investigate in these tests are: 

-its wave-like behavior, 
-its large scale, planetary extension, 
-the drastic variability of the bathymetry between the real ocean and adjacent 

seas. 

Two analytical solutions have been built, for (1) a channel of constant depth in a 
rotating framework and (2) a nonrotating channel but including a continental 
plateau. 

2.1. The Kelvin Amphidrome Tests 

2.1.1. The Analytical Solution 

The geometry of the problem is shown on Fig.la. We consider a zonal channel 
limited by two open boundaries at longitudes AL and /1,, and two solid walls at lat- 
titudes qL and (p2; the channel has a constant depth and is rotating with the earth. 
A tidal forcing is specified at the open limits. A bottom friction damping linearly 
related to the velocity field is retained. Tidal potential forcing is ignored. When con- 
sidering a channel with a small width (b = a. (cpZ - q,)) compared to the external 
radius of deformation given by Rd= (I/f)(g . H)“‘*, it is justified to look for 
solutions with only zonal flows (v = 0). Moreover, the small extent of the domain 
allows us to neglect the terrestrial curvature and look for solutions of system (1) 

L- ‘\ -- 

FIG. 1. (a) Kelvin amphidrome test domain: geometry and T, grid; (b) T,: (c) r,; (d) r,. 
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written in a usual plane system of coordinates x and J, Pn that conlext, the geaieral 
solution of (I ) is 

a(~, y ) = K exp ( 1% cos 0 + x sin 6) exp [j( y sin % + x cos 8 j] (6: 

with 

K i.s a constant. 
Ft represents a damped version of the classical Kelvin amphidrome valid for 

waves in narrow frictionless rotating channels [ 111. One visualization is given on 
Fig. 2, for the following parameters: L = 495 km, b = 200 km. Ei = 50 m. iti .= 
1.4 10m-‘spl, r=~“‘=3.12 10m5s-‘, ~‘=~“=OS~’ and K=3m. 

The sea surface elevations are decreasing down IO zero at a point called 
‘“amphidromic point” around which the cophase lines are rotaticg. 

AMPLITUDES AMPLITUDES 

PHASES 

FIG. 2. Analytical solution for the damped Kelvin amphidrome (amplitudes of x in 1~. azd pleases in 
degrees ). 
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2.1.2. The Numerical Results 

The preceding result has been computed numerically with the finite element 
model presented in Section 1. The boundary conditions are taken from the 
analytical solution (Eq. (6) and (6a)) along the two meridional openings. In order 
to investigate the factors controlling the quality of the numerical calculations, 
several simulations have been done under different conditions. We have tested: 

-the size of the triangles, 
-the degree of the basic polynomials approximating the solution over each 

triangle. 
-the degree of approximation of numerical integration (all the numerical 

computations are made with Hammer’s formulas [7] j 

In order to rationalize the comparison between the analytical and the numerical 
solutions, an error norm has been computed over all the mesh points: 

E2 = c (SOI.“““, - sol.,,)2 
1 
‘1 sol.;, 

where sol.,,., denotes the finite element solution and sol.,, the exact one. 
The standard deviations are displayed on Fig. 3 for the amplitudes of the sea-sur- 

face elevation (Fig. 3a) and the velocity (Fig. 3b). These diagrams illustrate the 
degree of precision which can be reached with a given density of triangles over the 
integrated physical domain. 
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FIG. 3. Precision of the computed solutions: &‘=I (sol..,, - sol,,)‘,T SOI.:.~ (the s-scale is 
logarithmic): (a) sea-level elevations; (b) modulus of p-solution. 
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a. The different meshes. Four approximately reguIar grids have been used. 
They are presented on Figs. la, b, c, d. The typical mesh size vary from l,!lOih to 
1/4Oth of the wavelength of the studied phenomenon (defined as :,1= 
2xw-‘(gH)l.‘): 

--T, : 22 triangles (maximum mesh size AL,,, = N!O) 
--T2 : 44 triangles (AL,,, = n/13) 
-T, : 90 triangles (AL,,, = n/20) 
-T,: 316 triangles (AL,,, = A/40). 

Figures 3a and b show that the precision of the solution is improved by a facto: of 
10 when increasing the space resolution from &lo to /?!40. 

b. Influence of the degree of the basic polynomials. The three first elements DE 
the Nicholaides family (P, , Pz, P,-Lagrange elements [ 171) have been tested. In 
agreement with the theory, for a given triangulation, the solutioc is greatly 
improved by using higher order elements. 

For the sea-surface evaluations, the precision of the solution is increased by a fac- 
tor of IO to 25 when using P, approximation instead of PI ; the gain is only of 3 or 
even Iess when going from Pz to P;. 

For the velocities, which are derived from rhe x-solution through Eqs. (4). ihc 
precision is even more dependent of the choice of the basic polynomials. ith 1, 
approximation, the velocity-solutions are constant on each triangle, and it can be 
seen in Fig. 3b that the precision of the solutions is bad, even when refining the 
mesh down to .,1,‘40, and that precision is greatly improved by increasing the degree 
of approximation: 

--by a factor 10 to 25 for P, instead of Pi: 

-5y a factor 2 to 8 for P, instead of PT. 

8ne should notice a phenomenon of “super-precision” for the currents at the cec’ler 
of gravity of each triangle, cleariy established by a careful comparison between the 
results of computations and the analytical solution. 

It must be noticed also, on Fig. 3, a surprising feature for the precision of the b:- 
solution with a P, approximation. We can observe on the lower curve of Fig. 3a an 
increase in the sea level error as the resolution increases. 

c. Influence of numerical integration. An exact integration in L,(a, ,Bj-see 
Eq. (5 )-requires formulas of order 2k+ 1 because of tbe term 
jB -ju cos p MB* d&Z?, if the polynomial approximation of CI is taken in P. For the 
other terms, a formula of order 2k - 1 is sufficient when the depth N and the fric- 
tional coefficients are constant, which is the case in that test. To estimate the 
influence of numerical integration, we have tested the following formulas: 

-for a PI approximation of ~1: integration of order 1 and 3, respectively 
exact for polynomials in PO and PI. 
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-for a Pz approximation of a: integration of order 3 and 5, respectively 
exact in P, and PG. 

-for a P, approximation of CC integration of order 5 and 7, respectively 
exact in P4 and Pg. 

The results are presented in Figs. 4a and b, displayed in terms of computer cost 
(in anticipation of the analysis of the following paragraph). It can be observed that 
the precision gain is not very important when using a 2k-t 1 order integration for- 
mula for P, and PI approximations. On the contrary, for a P3 approximation, a 
noticeable difference can be pointed out between integrations of order 5 and 7, in 
favour of the latter. As we will conclude in the following that Pz approximation is 
the most convenient for practical applications, a numerical integration exact for 
polynomials in Pzkp 1 appears to be sufficient for our purpose. 

d. The computer costs. Figures 4a and b sum up the cost of the numerical 
experiments carried out in the Kelvin amphidrome test. Globally, the dependence 
between the cost, the number of triangles, and the order of approximation are 
classical: 

-for a given cost, a better numerical solution is obtained when using higher 
order approximation. 

to- 
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FIG. 4. Dependence precision-CPU time (T ins) (the computations were run on an HB68 com- 
puter): (a) sea-level elevations; (b) modulus of p-solution. 0: P,-approximation, integration of order 1; 
W: PI-approximation, integration of order 3; A: P,-approximation, integration of order 3; a: P2- 
approximation, integration of order 5; 0 : P,-approximation, integration of order 5; 0: P,- 
approximation, integration of order 7. 
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-the precision is greatly improved by refining the gain is obtained when using r,- 
triangulation instead of TS. This is even more important for P,-approximation. 

The two diagrams lead to the conclusion that P,-approximation is the most 
appropriate. fiowever, this implies, for reasonable computer cost, the use of a 
limited number of triangles, which may be acceptable for tbe present case with a 
very regular geometry, but is totally inadequate for reahstic domains with complex 
coasthnes. For the same cost, quite the same precision can be achieved with Pzm 
elements, but with a higher spatial resolution for the triangulation. Moreover, fcr 
any type of approximation in 

Pk and a given triangulation. we have aheady noticed 
that no significant difference exists between 2k - 1 and 2k + 1 order integration for- 
mula, except when h- is 3. 

Consequently, it appears that the investigated test problem can be precisely and 
economically well solved with a P,-approximation and a 3rd order integration for- 
mula. 

e. Note about theoretical error estimations. Let us denote Xc,” the SoboIev 
space of order 171 for complex valued functions, and 9’ the space of complex-valued 
fonctions the real part and the imaginary part of which are square integrable. 

If we try to calculate the estimation error given by Arcangeli and Gout [2]. 1~’ 
must evaluate la/ pLL and \E\~, which are present in the following inequalities (see 
[2 I] for their calculus j: 

I&--0L .,,/9’<3d214,? for a P,-approximaLion of ,Xx. 

/~-cfC[,&&i’lollw,; for a P,-approximation of :: 

id is the largest side of the triangles). 
Computations of [a[ KL and Ic~/~~~ can be carried out in terms of I,xjY: and :WZ 

finally obtain estimations for the relative error in terms of Y’-norm: 

/~-hllY?<7~10-iOd2 
/?I92 - 

(P,-approximationj 

IX--cI numi9~ c4.10- ,6d3 
I’Xl y’? 

t P,-approximation j. 

For instance, when d takes the value LOO km, the relative errors in Y”-norm are 
respectively 200 % for a PI-approximation and 40 o:‘o for a P,-approximation. These 
results prove that the error estimations only give orders of magnitude for the 
solutions, but fortunately are not realistic enough. 

21.3. Coidusion 

in order to obtain a satisfactory representation of the sea-level elevation and the 
velocity field, the use of the second element in the Nichoiaides family with a 
reasonably refined mesh seems to be quite sufficient. Figure 3 suggests a critetia irk 
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order to obtain a given precision for the a-solution, in terms of a fraction of the 
wavelength. An approximate precision of lo-’ for the velocity and 10V3 for the 
elevation in the s-sense can be reached when choosing a maximum basic size of 
about ~I/15 for the triangles. In addition, this corresponds to the optimal level, from 
the economic point of view. 

It is important to have in mind, however, that the problem solved for this test 
involves constant frictional coefficients which is not the case for real applications, 
especially when the domain includes shallow water areas. The preceding conclusion 
cannot consequently be definitely generalized to practical problems. 

2.2. The Continental Shelf Test 

2.2.1. The Exact Solution 

The ocean tide problem includes the propagation of the tidal waves from the 
deep ocean (4000 m) to the shallow continental basins (less than 200 m). From the 
conclusions of the preceding chapter, a strategy can be adapted with our finite 
element model to lit the density of the triangulation to the resolution required for 
an expected precision, in relation with the depth over the different areas 
investigated. An exact solution has been built for the schematic case depicted in 
Fig. 5: the investigated domain includes a 4000 m deep flat bottom ocean, con- 
nected by a steep continental margin to a shallow basin gently sloping from 200 m 
to 10 m, and closed by a vertical wall at its end. The ocean tide is induced in 
that channel by the ocean side open boundary. The earth rotation and the bottom 
damping are ignored in that test case. 

An exact solution can be calculated by solving the second-order partial differen- 
tial equation (3) in the three subdomains S,, SZ, S3 characterized by their depth 

py--y 

H -------,H:200.m 

L H -4OOO.m 

FIG. 5. Depth profile for the shelf experiment. Triangulations T, and i”s, 
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profile. The solution is completely determined by prescribing continuity conditions 
for c( and ~1 at points X, and XI, a Dirichlet condition for E at the open boundary 
and a no flow condition at the wall. This solution is displayed in Fig. 6 in fuh hne 
for an incident wave of 1 m in amplitude, propagating in 2 channel 890 km long. 
situated at the equator. 

2.2.2. The Numerical Results 

The numerical solutions desplayed in Fig. 6 have been computed under different 
conditions: 

--With a uniform space resolution of 2” everywhere ( T5), In such a case, rhe 
mean value of the largest side of the triangles is about .4/40 for the oceanic par! of 
the domain but approximately A/l0 when N is 200 m and A,i2 when H is IO m. 
which is too coarse over the shelf. Such a mesh size is commonly used in global 
ocean tide numerical modelling. 

I 

I.--L,;;.,:; - 0 12345678x"Ol 2 3 4 5 6 7 8): 

FIG. 6. Comparison of the numerical solutions (-, analytical; f, PI-approximation; 3. Pz- 
approximation): (a) T,-grid, sea-surface elevations (in m); (b j same as 6a, except for T,: (cj I’,-grid, pi- 
velocity solutions (in rn. s-l); (d) same as 6c, except for T6 
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-With an adapted mesh on the shallow area based on the ~I/15 criterion with 
PI-polynomials derived from Section 2.1.3 ( T6). This leads to typical mesh size of 
0.3 degrees for this part of the domain. 

-With first-order PI and second-order P2 approximations. The results are 
plotted in Figs. 6a, b for the sea-surface elevations and 6c, d for the velocity field. 

a. Results for the amplitudes. As expected from Section 2.1, the numerical 
solutions are all correct over the ocean; a small discrepancy can be observed 
however for the uniform coarse grid computations, of the order of 2 cm when 
approaching the continental slope. Over the continental shelf, the computed 
solution is far from the exact one for insufficient spatial resolution, even when using 
Pz polynomials (see Fig. 6a). On the contrary, the solutions are excellent with a 
reasonable discretization (see Fig. 6b): the numerical solutions match the exact one 
everywhere in the ocean, the continental margin and the shallow water area. 

b. Results for the currents. For the coarse grid, both approximation P, and 
P, do not give satisfying results. The amplitude of the velocity is too small and very 
far from the exact one. (The phases are not represented here, but it must be noticed 
that there is no problem to reproduce the exact phase solution for CL and p j 

For the adapted mesh, results are very good for the Pz approximation (see 
Fig. 6d). The maximum amplitude of the analytical solution is reached by the 
numerical one, which was clearly not the case when computing with the coarse grid. 
The P, solution gives currents which are not very different from the exact ones but 
the use of that first-order approximation has the drawback to supply constant 
currents on the triangles, which makes a good representation over the shelf difficult. 
Very good confidence can thus be placed in the numerical solutions computed with 
the present model under reasonable conditions. 

3. INTER~~MPARIs~N FOR A COMPLEX EXERCISE 

The preceding tests based on analytical solutions do not allow to include other 
important ingredients of the problem of ocean tides. In the following, a more com- 
plex schematic exercise is presented including: 

-a variable topography and earth rotation, 
-a tide generating force, 
-nonlinear shallow water bottom friction damping. 

Evidently, it is not possible to obtain an analytical solution for that complex case. 
But a reference solution can be expected from a computation with P2 polynomials 
and adequate resolution. And the aim of this section is to characterize the 
magnitude of the errors resulting from some drastic violations of the elementary 
rules pointed out in Section 2.1.3. 
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3.1. Parameters of the Numerical Experiments--Cdd Domains 

In that test, we consider a channel 3500 km long and 700 km wide, situated at a 
mean northern latitude of 50 degrees. This domain is taken on the earth and wi2 
al-ways be displayed, in the following, in a horizontal and orthogonal system of 
spherical coordinates with longitude as abcissa and latitude as ordinate. The dep: 
profile is plotted on Fig. 7a: two shallow-water areas simulating an eastward and a 
westward shelf are included, each of them extending 300 km and gently sloping 
from 10 to 200 m. 

Three different grids are built to solve the problem. The first one I’, (see Fig, 7b) 
is very coarse, with a maximum step size of approximately 1j15th of the tidsi 
wavelength for an ocean of 4000 m depth. This leads, for this regular coarse grid. to 
an approximate 7’ mesh size. 

The second grid, called T, (see Fig. 7c), is a regular grid with a uniform 3,‘~mesh 
as for the preceding shelf test, which is a typical discretization of the ocean used for 
global ocean tides modelling. 

The third grid, called T9 (see Fig. 7d): is built by application of the criterion 
derived from the conclusion of the Kelvin amphidrome test. Its mean mesh size is 
about i,‘l3th to 1/14th of the wavelength over the whole domain, even on the con- 
tinental shelves. 

300 km 

hr4000m 

2900 km 

FIG. 7. (a) Depth profile for the complex exercise; \b) I-:-grid (AL,,,=7 degrees); (c) 7,-grid 
(AL.,,, = 2 degrees); (dj T,-grid (AL,,, = 1/14th of the tidal wavelength everywhere;. 
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PI and P2 approximations are used to compute the solutions with our finite 
element model. The non-linearity due to the quasi-linearization of the quadratic law 
of bottom friction is resolved through an iterative process described in [13, 141. 

3.2. Results 

3.2.1. General Features of the Solution 

We can legitimately consider that the solution computed with T,-grid and Pz- 
elements is the most precise one, and we will use it as a reference in the following; 
hereafter, this solution is referenced as “S.” This solution is displayed on 
Figures 8a, b. The decrease of the sea-surface elevation down to zero and the 
rotation of the cophase lines around the same point show the existence of an 
amphidrome. In the deep ocean, the amplitude of the S-solution increases up to 
1.20 m, with a uniform spacing of the corange lines. On the continental shelves, the 
sea-surface elevations are enhanced up to 3.30 m. 

3.3.2. Comparison between P, and P, Approximations 

We do not present illustrations for the set of P,-solutions because of lack of 
space. Let us comment however on the main conclusions of that comparison. As 
expected, the three P, solutions are all far from S. As a general rule, we observe, for 
each grid, an increase of 20 to 30% for the sea-surface elevation when using P2 
polynomials instead of PI. For the “Tg-P,” experiment, the maximum amplitude 
obtained for the a-solution is about 2.40 m instead of 3.30 m for S. 

300 60 0 

(o)Qjjg 

330 

FIG. 8. (a) Ssolution ( T,-P2), amplitudes of the sea-surface elevations (in cm); (b) S-solution, 
phases distribution in degrees; (c) “T,-P,” solution, amplitudes of u (in cm); (d) “2-s-P2” solution, 
amplitudes of c( (in cm). 
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We know, from El3 and 141, that the present problem needs a correct resolution 
of the velocity field because of the nonlinear damping characteristics over the shelf. 
The present problem is much more difficult than the shelf one of Section 2.2, where 
the flow was cylindrical; here, the velocity field is bidimensional because of the 
presence of the earth rotation, and correct velocity solutions cannot be obtained 
with a P, approximation, unless a very tine grid is used everywhere. Consequently. 
from that comparison it is clear that at least P2 polynomials are necessary to solve 
precisely the fully nonlinear problem. 

3.23. Intercomparison betnleen P2 Solutions 

The P1 solution with the T,-grid is displayed on Fig. 86. It gives an evidently bad 
representation of the sea-level elevation on the shelf part of the domain. Moreover, 
in the deep ocean, the solution appears remarkably bad though the maximum mesh 
size is 1/15th of the wavelength. This clearly illustrates the influence of the nonlinear 
damping shelf effects on the deep ocean solution. 

The results of the “T8-P2” experiment are presented in Fig. 8d. In the deep ocean, 
the solution is very similar to S. But this is net quite true for the shailotli areas of 
the domain. The sea-surface elevation results for the “T,-P2” test are smaller than 
those of the S-solution. For instance, a deficit of 30 cm can be observed alcng the 
eastern coast (for exact amplitude of 3.30 m). As far as phases are concerned. a 
systemattc phase lag varying from 3 to 4 degrees is found between the two solutions 
compared here. 

Figure 9 allows a more quantitative comparison. This plot reproduces a zonal 
section of the domain at latitude 50”, for the two solutions concerned. T 
westward shelf part of the channel ends at about longitude 5.5’; in that subdomain, 
he difference between the two solutions for the sea-surface elevation varies from 

FIG. 9. Zonal section at 50”. for “7’s-P,” and Ssolution comparison: (C,) amplittide zf ihe .5- 
solution in m; (Cz) 6 = amplitude (S-solutiontamplitude (T,-P, solution) (in cm j. 
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4.5 % to 6 % of the S-solution. In a transition zone, this difference is between 3.5 % 
and 4.5%, and it is less than 3.5% in the deep ocean. Several zonal sections show 
exactly the same behavior of the solutions so that it can be generalized for the 
whole domain. 

All these relative discrepancies are small; however, they are significant. If a 
precision of the order of some centimeters is expected for ocean tide modelling, 
which is the case now for satellite altimetry applications, the use of adapted grids 
over continental shelves is necessary to provide improved solutions over all the 
studied areas. Of course, over the continental shelves, nonlinear effects have to be 
taken into account, through the perturbation method included in formulation (1). 

4. CONCLUSIONS 

From the applications realized on the basis of the two analytical solutions for- 
mulated to test the precision of the finite element model developed for ocean tide 
computations, several rules for practical use have been clearly demonstrated: 

-the necessity of adapted meshes, related to the wavelength of the modelled 
phenomenon, with a mean mesh size varying with the local depth of the studied 
areas (~1 = 27~0 -‘( gHj’,‘): 4L = /1/‘15. A precision of lo-’ on the elevations and 
lo-’ on the velocities can be expected for the numerical integration of the problem 
as formulated in (1). 

-the superiority of the P,-approximation based on economic considerations 
and quality criteria for the computed solutions. 

-the interest of numerical integration exact only to the order 3 for P?- 
approximation. 

With these schematic applications and the more complex nonlinear case presen- 
ted in the third part of the present work, we have illustrated the level of precision 
which can be expected with a correct use of that finite element model (some cen- 
timeters or less over oceanic and even continental shelf areas), and the typical 
errors induced by a violation of the rules formulated above. These errors can be 
very large over the shallow water areas where the lack of resolution is crucial, but it 
is important to underline that they also induce significant discrepancies in the ocean 
parts of the domains investigated. 

All these elements will clearly be helpful for future use of that present model in 
practical application to the computation of real ocean tides. 
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